Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475550

RESUMO

The species Prunus mume consists of uniquely aromatic woody perennials with large amounts of free aromatic substances in the flower cells. Uridine diphosphate glycosyltransferase (UGT) modifies these free aromatic substances into water-soluble glycoside-bound volatiles (GBVs) which play an important role in regulating the use of volatiles by plants for information exchange, defense, and stress tolerance. To investigate the changes in the glycosidic state of aromatic substances during the flowering period of P. mume and discern the location and expression of glycoside synthesis genes, we extracted and enzymatically hydrolyzed GBVs of P. mume and then utilized gas chromatography-mass spectrometry (GC-MS) to characterize and analyze the types and contents of GBV glycosides. Further, we identified and classified the members of the UGT gene family of P. mume using the bioinformatic method and analyzed the correlation between the expression of the UGT family genes in P. mume and the changes in glycosidic content. The results showed that the benzenoids were the main aromatic substance that was glycosylated during flowering in P. mume and that glycosidic benzaldehyde was the most prevalent compound in different flower parts and at different flowering stages. The titer of glycoside benzaldehyde gradually increased during the bud stage and reached the highest level at the big bud stage (999.6 µg·g-1). Significantly, titers of glycoside benzaldehyde significantly decreased and stabilized after flowering while the level of free benzaldehyde, in contrast, significantly increased and then reached a plateau after the flowering process was completed. A total of 155 UGT family genes were identified in the P. mume genome, which were divided into 13 subfamilies (A-E, G-N); according to the classification of Arabidopsis thaliana UGT gene subfamilies, the L subfamily contains 17 genes. The transcriptome analysis showed that PmUGTL9 and PmUGTL13 were highly expressed in the bud stage and were strongly correlated with the content of the glycosidic form of benzaldehyde at all stages of flowering. This study provides a theoretical basis to elucidate the function of UGT family genes in P. mume during flower development, to explore the mechanism of the storage and transportation of aromatic compounds in flower tissues, and to exploit industrial applications of aromatic products from P. mume.

2.
J Anim Physiol Anim Nutr (Berl) ; 107(1): 103-112, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35315139

RESUMO

This study aimed to evaluate the effects of administration of sodium humate (HNa) and glutamine (Gln) on growth performance, diarrhoea incidence, serum parameters, and faecal microflora of pre-weaned Holstein calves. In a 57-day experiment, 28 healthy newborn female calves were randomly allocated to four treatment groups: (1) CON (control); (2) HNa (basal diet + 5% HNa); (3) Gln (basal diet + 1% Gln); and (4) HNa + Gln (basal diet + 5% HNa + 1% Gln). The calves in the CON group were fed with basal diet. HNa and Gln were alone or together mixed with milk (Days 1-20) or milk replacer (Days 21-57) and orally administered to each calf. The results indicated that calves combined supplemented with HNa and Gln had a higher average daily gain at 0-21 days, 21-57 days, and 0-57 days, and starter intake at 21-57 days and 0-57 days (p < 0.05). Compared with the CON group, calves in HNa, Gln, and HNa + Gln groups showed lower faecal scores and diarrhoea incidence at 0-21 days and 0-57 days (p < 0.05). Combined administration of HNa and Gln increased the concentration of IgG and IgA, activities of glutathione peroxidase (GSH-Px) and total antioxidant capacity (T-AOC) but decreased the concentration of diamine oxidase (DAO), D-lactic acid (D-lac), TNF-α, and malondialdehyde (MDA) in the serum of calves compared with the CON group throughout the entire period (p < 0.05). Furthermore, the abundances of Bifidobacterium and Lactobacillus were increased but the Escherichia coli was decreased in faecal grab samples of HNa + Gln group calves in comparison with the CON group (p < 0.05). In conclusion, combined administration of HNa and Gln effectively improved the growth performance, antioxidant and immune status, and intestinal beneficial bacteria, and further reduced the diarrhoea incidence of the pre-weaned calves.


Assuntos
Antioxidantes , Glutamina , Animais , Bovinos , Feminino , Incidência , Suplementos Nutricionais , Dieta/veterinária , Desmame , Diarreia/prevenção & controle , Diarreia/veterinária , Ração Animal/análise , Peso Corporal
3.
Animals (Basel) ; 12(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35011229

RESUMO

This study aimed to evaluate the effects of the administration of sodium humate (NaH) on the growth performance, diarrhea incidence, and fecal microflora of pre-weaned Holstein calves. In a 53-day experiment, forty healthy newborn female calves were randomly allocated to the following four treatment groups: (1) control (basal diet); (2) 1-gram NaH (basal diet extra orally supplemented with 1 g of NaH dissolved in 100 mL of milk or milk replacer daily); (3) 3-gram NaH (basal diet extra orally supplemented with 3 g of NaH dissolved in 100 mL of milk or milk replacer daily); and (4) 5-gram NaH (basal diet extra orally supplemented with 5 g of NaH dissolved in 100 mL of milk or milk replacer daily). NaH was mixed with milk (d 2-20) or milk replacer (d 21-53). Calves in the 5-gram NaH group had a higher ADG during d 1 to 21 and d 21 to 53 than the other groups did (p < 0.05). Fecal scores and diarrheal incidence were significantly lower in the 3-gram and 5-gram NaH groups than the 1-gram NaH and control groups during d 1 to 20 (p < 0.05). The serum IgA, IgG and IL-4 concentrations, and T-SOD and T-AOC activities were higher, and the serum IL-6, TNF-α, D-lactic acid, and MDA concentrations were lower in the 5-gram NaH group than the control group (p < 0.05). Furthermore, NaH supplementation increased the abundances of Bifidobacterium and Lactobacillus but decreased the abundance of Escherichia coli in feces (p < 0.05). These encouraging findings indicated that supplementation with 5 g of NaH effectively improved the immune status, antioxidant capacity, and intestinal beneficial bacteria, and further improved the growth performance and reduced the diarrhea incidence of the pre-weaned dairy calves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA